10 research outputs found

    Activation of Membrane Androgen Receptors in Colon Cancer Inhibits the Prosurvival Signals Akt/Bad In Vitro and In Vivo and Blocks Migration via Vinculin/Actin Signaling

    No full text
    Recently, we reported that membrane androgen receptors (mARs) are expressed in colon tumors triggering strong apoptotic responses. In the present study, we analyzed mAR-induced downstream effectors controlling cell survival and migration of Caco2 colon cancer cells. We show that long-term activation of mAR downregulated the activity of PI-3K and Akt and induced de-phosphorylation/activation of the proapoptotic Bad (p-Bad). Moreover, treatment of APCMin/+ mice, which spontaneously develop intestinal tumors, with mAR-activating testosterone conjugates reduced the tumor incidence by 80% and significantly decreased the expression of p-Akt and p-Bad levels in tumor tissue. Furthermore, mAR activation strongly inhibited Caco2 cell migration. In accordance with these findings, vinculin, a protein controlling cell adhesion and actin reorganization, was effectively phosphorylated upon mAR activation. Phosphorylation inhibitors genistein and PP2 inhibited actin reorganization and restored motility. Moreover, silencing vinculin by appropriate siRNA’s, or blocking actin reorganization by cytochalasin B, restored the migration potential. From these results we conclude that mAR activation inhibits the prosurvival signals Akt/Bad in vitro and in vivo and blocks migration of colon cancer cells via regulation of vinculin signaling and actin reorganization, supporting the powerful tumoristatic effect of those receptors

    Roadmap on Commercialization of Metal Halide Perovskite Photovoltaics

    Get PDF
    Perovskite solar cells represent one of the most promising emerging photovoltaic technologies due to their high power conversion efficiency. However, despite of the huge progress made not only in terms of the efficiency achieved, but also fundamental understanding of relevant physics of the devices and issues which affect their efficiency and stability, there are still unresolved problems and obstacles on the path towards commercialization of this promising technology. In this roadmap, we aim to provide a concise and up to date summary of outstanding issues and challenges, and progress made towards addressing these issues. While the format of this article is not meant to be a comprehensive review of the topic, it provides a collection of the viewpoints of the experts in the field which covers a broad range of topics related to perovskite solar cell commercialization, including those relevant for manufacturing (scaling up, different types of devices), operation and stability (various factors), and environmental issues (in particular the use of lead). We hope that the article will provide a useful resource for researchers in the field and that it will facilitate discussions and moving forward towards addressing the outstanding challenges in this fast developing field

    Roadmap on commercialization of metal halide perovskite photovoltaics

    Get PDF
    Perovskite solar cells (PSCs) represent one of the most promising emerging photovoltaic technologies due to their high power conversion efficiency. However, despite the huge progress made not only in terms of the efficiency achieved, but also fundamental understanding of the relevant physics of the devices and issues which affect their efficiency and stability, there are still unresolved problems and obstacles on the path toward commercialization of this promising technology. In this roadmap, we aim to provide a concise and up to date summary of outstanding issues and challenges, and the progress made toward addressing these issues. While the format of this article is not meant to be a comprehensive review of the topic, it provides a collection of the viewpoints of the experts in the field, which covers a broad range of topics related to PSC commercialization, including those relevant for manufacturing (scaling up, different types of devices), operation and stability (various factors), and environmental issues (in particular the use of lead). We hope that the article will provide a useful resource for researchers in the field and that it will facilitate discussions and move forward toward addressing the outstanding challenges in this fast-developing field
    corecore